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Abstract - Recent developments in advanced driver-assistance systems necessitate an increasing number of tests
to validate new technologies. Carrying out these tests on track would take too long, this is why automotive groups
rely on simulators to perform most tests.
These simulators serve various purposes and enable the creation of scenarios with varying degrees of realism. In
this article, we focus on a simulator that generates vehicle behavior using time series.
But the reliability of these simulators for constantly refined tasks is becoming an issue and, to increase the number
of tests, the industry is now developing surrogate models, that should mimic the simulator’s behavior while being
much faster to run on specific tasks.
In this paper, we develop a surrogate model that replaces the simulator by generating time series based on user-
defined input parameters. We first test several classical methods like random forests, ridge regression, or convo-
lutional neural networks. Then we build three hybrid models that combine these methods and combine them to
obtain an efficient hybrid surrogate model.
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1. Introduction
Certification of Autonomous Driver (AD) and Ad-
vanced Driver-Assistance Systems (ADAS) are
highly sensitive applications that should be carried
out very carefully. The numerous onboard sensors in
cars give access to a large amount of information.
There are many strict regulations, making it neces-
sary to carry out a lot of real on-track experiments
over long distances. The Renault group has decided
to develop digital platforms to simulate driving as-
sistance and vehicle automation systems to create
simulation data. These data will complete or even re-
place the real experiments done on track in the certi-
fication process.

Before integrating the simulations into the certifica-
tion process, the simulator must be calibrated to
generate data similar enough to the real on-track ex-
periments. The overall goal is to develop a method-
ology that will gauge the quality of the simulator by
comparing it to real on-track data and then calibrat-
ing and readjusting it. Once recalibrated, the simu-
lator should be able to generate more realistic time
series.

The proposed methodology for calibrating the simu-
lator necessitates using it repeatedly, which is not
feasible. Hence, it is necessary to develop a com-
putationally more efficient surrogate model that
mimics the simulator and then serves as a substi-
tute. This paper presents several surrogate models
that can replace the simulator by generating time se-
ries.

Section 1.2 describes in more detail the general ob-
jective and the resulting specific problem we seek to
solve.

1.1. Renault simulator
The simulator is based on SCANeRTM studio soft-
ware suite (AVSimulation, n.d.). It is dedicated to
automotive and transport simulations. Among other
things, it is designed to drive and test AD/ADAS by
providing all the necessary tools to build a realistic
virtual world by defining: road environments, vehicle
dynamics, traffic, weather, ..., etc. The simulator re-
quires different input parameters to define the de-
sired experiment (initial speed, braking efficiency, ...,
etc) and then generate the associated time series de-
scribing vehicles’ behavior (speed, acceleration, ...,
etc). We define a scenario as a combination of input
parameters and their associated time series.

1.2. Objectives and full process
The proposed methodology to calibrate the simula-
tor is articulated between the resolution of an inverse
problem and a direct problem. The whole process is
similar to the one used in (Giraldi, et al., 2017), it is
briefly described in Fig. 1.

The overall problem is the inverse one:

1. we have one so-called reference experiment, on-
track time series, and its associated input param-
eters called nominal values,
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Figure 1: Summary of the general process. The three blocks on the left represent the inverse problem which consists in finding the
values of the input parameters associated with the reference on-track test. The middle section describes how ABC methods work.

The last part is about the issue we are facing and how we intend to solve it.

2. and we want to recover the input parameters that
would simulate the closest time series to the ref-
erence ones.

To resolve the inverse problem, we use Approxi-
mate Bayesian Computation (ABC) methods which
are likelihood-free inference schemes. Several steps
are repeated iteratively and one of them requires
generating time series from a set of input parame-
ters. First, we (1) draw candidate parameters accord-
ing to priors; then (2) we simulate the time series as-
sociated with these candidate values, this is precisely
what the simulator is for; and finally (3) we go to the
acceptance-rejection step if the simulated time series
is close enough to the reference ones, we accept the
candidate parameters, otherwise, they are rejected.
We repeat these three steps, as many times as nec-
essary or desired.
Fig. 2 shows the benefit of this parameter calibration.
We compare the reference time series to the time se-
ries simulated with nominal values vs. calibrated pa-
rameters. Time series are closer to baseline values
when using inferred rather than nominal parameters.

Figure 2: Reference on-track test and time series simulated
with nominal parameters vs. calibrated parameters

At this point, we are facing a problem. In step (2),
the simulator is computationally too expensive to use
iteratively. The idea is to develop a surrogate model
that will mimic and replace the simulator and then
perform this step during the ABC process. It corre-
sponds to solving the direct problem. It is a classical
learning problem involving multivariate time series.
In summary, to solve the inverse problem of calibrat-
ing the simulator, it is necessary to first solve the di-
rect problem, which involves constructing a surrogate
model. This article deals with this specific task.

1.3. Surrogate model
Surrogate models are largely used in all types of
domains and contexts, they have already demon-
strated their usefulness and efficiency using a wide
variety of possible methods: Polynomial Chaos Ex-
pansions (Sraj, et al., 2016), Radial Basis Func-
tions and Kriging (Beglerovic, Stolz, and Horn, 2017),
Bayesian Surrogate Models (Ford, Moorhead, and
Veras, 2011), Surrogate Response Surface Models
(Mattis and Wohlmuth, 2018), Artificial Neural Net-
works (Xu, et al., 2020).

Surrogate models are also widely used in the auto-
motive field and have demonstrated their accuracy in
many applications like car seats (Long, Liao, and Yu,
2021), suspension components (Jiang, et al., 2021),
human-product interaction (Ahmed, et al., 2018) or
autonomous vehicles validation (Beglerovic, Stolz,
and Horn, 2017).

In this paper, we construct a surrogate model with su-
pervised machine learning methods that mimics and
replaces the Renault simulator by predicting the sim-
ulated time series.

Contrarily to the time series forecasting framework
where the objective is to predict the future from the
past, the surrogate model aims at predicting a whole
time series from a set of parameters. More precisely,
it is a generative model. The dataset used to build
the model is a set of beforehand simulated scenar-
ios output by SCANeRTM. The various input parame-
ters need to be carefully chosen so that the database
correctly represents the desired parameter definition
space.

The surrogate model must be as accurate as possi-
ble:

• the simulated scenarios have to be close enough
to the on-track experiments to prove their reliability,

• and the surrogate model, which replaces it, must
be as close as possible to the simulator’s behavior,
to make its use viable in the calibration process.

Moreover, with a more accurate model, the final time
series are even better as can be appreciated in Fig. 3.
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Figure 3: Reference on-track test and time series simulated
with parameters inferred with a simple model vs. a better

model

1.4. Mathematical description
We consider a dataset

(
xk, yk

)
. Each x is a vector of

RM and corresponds to a set of parameters given to
SCANeRTM. Each y is a vector of N time series y

(n)
t

of duration Tn output by SCANeRTM.

We aim to predict the entire time series: given x, we
want to predict y. These two are linked through the
deterministic simulator S∗: for a given set of parame-
ters, time series are generated

yk = S∗(xk) (1)

Constructing the surrogate model amounts to build-
ing a predictor Ŝ which returns all steps of the time
series. Given x, we predict y by Ŝ(x). This corre-
sponds to a classical supervised learning problem.

Figure 4: Summary of the training and predicting process of
the surrogate model

2. Data description
To build the surrogate model, we construct a dataset
with the SCANeRTM simulator. We look specifically
for an emergency braking scenario involving two ve-
hicles following each other and driving at given initial
constant speeds. The front vehicle (named target)
brakes and the following one (named ego) activates
its emergency braking to avoid a collision.

Table 1: Keywords definition

Keyword Definition
AEB automatic emergency braking

calibration methodology which assesses the qual-
ity of the simulator compared to real
on-track experiments and subsequently
readjusts it to optimize its utilization

distance corresponds to the distance between the
two vehicles, ego and target

ego designates the name of the vehicle
whose AEB is being tested

nominal values the parameter values corresponding to a
real on-track experiment

physical = real defines when the experiment is realized
on-track

scenario corresponds to a combination of input
parameters and associated time series,
it is one experiment

target designates the name of the vehicle that
brakes and that the ego vehicle must
avoid

Figure 5: Emergency braking scenario involving ego and
target vehicles

We give the simulator the values of the needed in-
put parameters to define the type of scenario and the
characteristics of the two vehicles, like initial speeds
and braking efficiency of ego. The output time series
will describe their behaviors: speed and acceleration
of the ego vehicle, the speed of the target vehicle,
and the distance between them.
The dataset contained several scenarios: time series
generated by distinct sets of parameters. Our goal is
to use this dataset to build a surrogate model that is,
a machine learning algorithm taking as input param-
eters and returning time series that should be close
to those that SCANeRTM would have generated.

2.1. Input parameters
For this specific scenario, SCANeRTM takes in input
7 parameters, divided into two groups. Scenario pa-
rameters define the initial speeds of the vehicles, the
initial braking strength of the front vehicle, and the
initial distance between vehicles. Then, there is ego
vehicle dynamic and environment parameters which
define for example front and rear braking efficiency
or Autonomous Emergency Braking (AEB) latency.
The simulator is deterministic, so the training
dataset’s variability only comes from input parame-
ter variability. We draw each parameter from a uni-
form law, independently from each other. Intervals of
each uniform law are defined by taking a percentage
around the defined nominal values (Table 2). The au-
tomotive certification authorities give these nominal
values, defining the values to be tested.
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Table 2: Intervals used to generate input parameters from
uniform law

Type Parameter Nominal Interval
value

scenario ego initial speed 50 [48, 52]
target initial speed 50 [48, 52]
target braking force -6 [-8.5, -5]
initial distance be-
tween the two 40 [38, 42]

MADA front braking efficiency 1 [0.4, 1.6]
& ENV rear braking efficiency 1 [0.4, 1.6]

AEB latency 0 [0, 55]

The distribution of each parameters values is repre-
sented in Fig. 6. We notice that ego and target init
speed histograms are not uniform. It’s because there
are some constraints on the parameter values and if
they don’t comply, the simulator can’t generate the
associated time series so the values are automat-
ically rejected. For example, the ego’s initial speed
must be larger than the target’s one.

Figure 6: Histograms of input parameters (percentages)

2.2. Output time series
Fig. 7 shows the time series describing the speed
and the acceleration of the ego vehicle, the speed of
the target vehicle, and the evolution of the distance
between them. This gives an idea of the different pro-
files contained in our initial dataset.

Figure 7: Time series corresponding to three experiments
for three distinct sets of parameters

The dataset is divided into three parts:

• train: 1442 scenarios to fit the first models (4-RF,
CNN, ...),

• validation: 100 scenarios to tune hyperparame-
ters for hybrid and aggregated models (choices for
each time step),

• test: 100 scenarios to evaluate a final model (ag-
gregated or hybrid 1 or 2) unbiasedly.

3. Surrogate model
construction

To measure our risk, we consider the root mean
squared error. For u the vector containing the true
values and v the predicted values, the classical RMSE
is given by

RMSE(u, v) =

√√√√ 1
n

n∑
i=1

(ui − vi)2 (2)

The RMSE will be used to select the best approach.
We will use it to compare beforehand simulated data
with predicted data created with each model.

In Section 3, we will calculate the RMSE on the train
and validation set. The test set will be used only at
the end to tune hyperparameters of hybrid and ag-
gregated models. In Section 4, we will calculate the
RMSE on the validation and test set.

We will also measure the training and prediction time
of each model. The prediction time is calculated for
100-time series.

3.1. Selection of the most promising
method

We realized a benchmark and tested different predic-
tion methods to compare them, like k-nearest neigh-
bors (k-NN), kernel ridge regression (KRR, with lapla-
cian kernel) (Exterkate, et al., 2016), simple convo-
lutional neural networks (CNN), polynomial chaos ex-
pansion (PCE) (Blatman and Sudret, 2011; Crestaux,
Le Maı̂tre, and Martinez, 2009), random forests (RF),
Deep Forest (DF) (Zhou and Feng, 2018).

Concerning random forests, we developed a global
model that predicts all the time series (1-RF) and an-
other one obtained by training four distinct random
forest models, one per time series (4-RF). We also
tried to combine random forests with dimensionality
reduction methods, like classical or functional PCA
(PCA-RF) (Shang, 2014; Wohlenberg, 2021).

Table 3 summarizes the results obtained with each
of these methods and compares the RMSE and the
computation times obtained.

In terms of RMSE, the k-NN algorithm produces the
worst results. The PCA-RF results are not very good
either, it reduces a bit the training time compared to
RF but not the prediction time. The results of KRR, DF,
and 1-RF are quite similar and a bit better. The CNN
and the 4-RF results are the best.
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Table 3: RMSE and computation times on train and validation sets for the seven methods
(*) laplacian kernel ; (**) for 100-time series

k-NN KRR (*) CNN DF 1-RF 4-RF PCA-RF

RMSE train 9.23 0.04 1.22 4.26 1.24 0.71 1.95
(×10−2) validation 30.15 7.21 2.31 7.05 7.27 3.69 12.35

training time 0.05 sec 0.22 sec 59 min 13 min 42 sec 53 sec 7.42 sec
prediction time (**) 0.01 sec 0.02 sec 1.39 sec 0.59 sec 0.08 sec 0.15 sec 0.16 sec

Table 4: RMSE for each time series on validation set
with the seven methods

method ego ego target dist. mean
speed accel speed

k-NN 11.00 64.77 8.02 36.83 30.15
KRR 2.20 7.14 1.63 17.86 7.21
CNN 0.18 3.85 1.06 4.16 2.31
DF 1.32 8.88 5.80 12.19 7.05

1-RF 1.36 9.54 4.86 13.31 7.27
4-RF 0.12 1.47 2.34 10.84 3.69

PCA-RF 2.33 20.53 5.58 20.96 12.35

3.2. More detailed comparison
Let’s now detail these results by calculating the RMSE
associated with each time series obtained with each
method. The results are given in Table 4.
We now notice important differences. Each method
performs more or less well with each time series. In
this case, CNN performs best for target speed and
distance while 4-RF performs best for the ego series.
We then want to detail further the error values: for all
methods, the RMSE is calculated for each time step,
Fig. 8 represents it.
We can distinguish which method performs better at
each time step. For distance, CNN outperforms other
methods, but it’s not so clear for the other series.
These results suggest building hybrid models.

Figure 8: For each method, we compute the RMSE obtained
at each time step on validation set

4. Hybrid and aggregated
models

We build three new models: two with a hybrid ap-
proach and one with aggregation. The first two con-

sist in choosing the best method at each time step
and the third one performs a mixture of methods by
giving them different weights computed with an ex-
pert aggregation.
The description of the three models is:
• Hybrid 1: for each time step, we select the best

method among the seven proposed;
• Hybrid 2: we keep the three most used methods

in Hybrid 1 (CNN, 4-RF and PCA-RF, see Table 5)
and select the best one for each time step;

• Aggregated: it is built with an Exponential
Weighted Aggregation (EWA) (Mourtada, 2016).

Fig. 9 shows which method performs best at each
time step and the weights given to each method for
each time step are shown in Fig. 10.

Table 5: Number of time steps for which the methods are
selected in the hybrid model 1

CNN 4-RF PCA-RF KRR 1-RF DF k-NN

1081 997 430 93 53 28 2
40% 37% 16% 3% 2% 1% ¿1%

4.1. Numerical results
We now summarize all numerical results obtained
with these three approaches. First, we calculate
RMSE values on the validation set which has been
used to tune hybrid and aggregated approaches: for
each time step, the choice of the methods for hybrid
models, and the weights for aggregated one. Then,
we calculate RMSE values on the test set to confirm
the results and evaluate the generalization quality.

4.1.1. Validation (Table 6)
On the validation set, the three new models are bet-
ter than the CNN and 4-RF models. The aggregated
is quite better. Hybrid 1 and Hybrid 2 are similar. To
conclude on the best model, let’s now see how these
results generalize to the test set.

Table 6: RMSE for each time series with CNN, 4-RF, hybrid
and aggregated models on the validation set

method ego ego target dist. mean
speed accel speed

CNN 0.18 3.85 1.06 4.16 2.31
4-RF 0.12 1.47 2.34 10.84 3.69

Hybrid 1 0.11 1.46 0.93 4.16 1.66
Hybrid 2 0.11 1.46 1.04 4.16 1.69

Agg. 0.07 0.59 0.24 1.36 0.56

Antibes, 6-8 Sep 2023 -147-



Construction of a Surrogate Model DSC 2023 EuropeVR

Figure 9: Selected method at each time step on the validation set.
First line is hybrid 1: among the 7 methods; Last line is hybrid 2: among the 3 best methods.

Figure 10: Associated weights for each expert at each time step on the validation set

4.1.2. Test (Table 7)
On the test set, the aggregated model is no longer
the best, it is even worse than the CNN model. We
conclude that the distribution of the weights cannot
be generalized and is too specific to the validation
set. However, the results of the two hybrid models
are still better than the CNN and 4-RF ones.
With the Hybrid 1 model, the prediction of target
speed is deteriorated. From these results, we can see
the advantage of the Hybrid 2 model: for each time
series, it improves predictions although the choice
of methods was made on the validation set. What-
ever the database used to calibrate, it is the Hybrid 2
model that generalizes best.

Table 7: RMSE for each time series with CNN, 4-RF, hybrid
and aggregated models on the test set

method ego ego target dist. mean
speed accel speed

CNN 0.23 3.34 1.00 2.52 1.77
4-RF 0.13 1.36 2.36 9.84 3.42

Hybrid 1 0.12 1.35 1.12 2.52 1.28
Hybrid 2 0.12 1.35 1.00 2.52 1.25

Agg. 0.50 3.66 1.08 3.38 2.16

4.1.3. Computation times (Table 8)
The aggregated model is very time-consuming, al-
though it is still faster than SCANeRTM. This model
does not bring anything more than the other ap-
proaches either in terms of accuracy or performance.

The two hybrid models improve the results but still
multiply the prediction times by 10. Depending on the
case, it will be necessary to decide which approach
is the most judicious.

Table 8: Computation times for CNN, 4-RF, hybrid and
aggregated models

(*) for 100 time series
(+) add the prediction times of each method

time CNN 4-RF

train 59 min 53 sec
pred. (*) 1.39 sec 0.15 sec

time Hybrid 1 Hybrid 2 Agg.
train (+) 0.29 sec 0.18 sec 2 min
pred. (*) 10.25 sec 8.59 sec 2 min

5. Conclusion
The true objective of this paper was to solve the di-
rect problem: mimic and replace the simulator which
is computationally too expensive. An iteration on
the simulator SCANeRTM used at Renault takes at
least 15 minutes, which becomes prohibitive when
repeated simulations are required, as it will be the
case in the ABC algorithm we intend to develop to
solve the inverse problem.

After testing several methods and approaches, kernel
ridge regression, convolutional neural network, and
random forests stood out. The computation times of
these surrogate models are much more reasonable.
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A closer look at the prediction errors shows that some
methods are more efficient in predicting certain time
series and that difference can even be more interest-
ing at a different time step of each time series.

We thus built three new models taking advantage of
these preliminary remarks:

• Hybrid 1 selects the method with the lowest RMSE
at each time step;

• Hybrid 2 selects the method with the lowest RMSE
at each time step only among the three globally
more efficient methods in Hybrid 1, which seems
to avoid overfitting.

• Aggregated model uses an aggregation of the ex-
perts with an exponentially weighted algorithm.

These three hybrid models provide a clear improve-
ment in predictions over the basic methods. The ag-
gregated model seems to generalize worse on the
test set. Hybrid 1 is quite good on both validation and
test set but Hybrid 2 generalizes better.
Concerning training times, these three new models
are more time-consuming. But the CNN model trains
for at least one hour. So adding a few minutes will not
be restrictive.
However, the prediction time is deteriorated, which
might become restrictive for their use in ABC meth-
ods. The computation times in Table 9 show that
there will be a trade-off to find for practitioners be-
tween accuracy and computation time.

To conclude, we easily built an overall reasonable
model using random forests. To improve this bench-
mark, we specify which method to use at each time
step of each time series. We emphasized the cost of
this refinement and leave the final choice to the user’s
time constraints.

Moreover, the described methodology allows to sys-
tematically build a better model than those obtained
with basic methods. The only question lies in deter-
mining whether the choices made at each time step
are generalizable or not. In the presented applica-
tion, we deliberately limited the scenarios to study a
specific case and obtain the best possible model for
this particular case. Consequently, the constructed
models will not be applicable to other cases, but the
methodology itself remains applicable and will allow
to build a more accurate model.

Table 9: Computation time to generate 50.000 simulations
one by one

4-RF Hybrid 2 SCANeRTM

1 minute 1 hour 5 days
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