Calibration of AD/ADAS simulator: ABC method using a surrogate model

Clara CARLIER^{*(1)(2)}, Arnaud FRANJU⁽²⁾, Matthieu LERASLE⁽¹⁾

clara.carlier@ensae.fr, arnaud.franju@renault.com, matthieu.lerasle@ensae.fr

 $^{(1)}$ CREST - IP PARIS - 91120 Palaiseau, France $^{(2)}$ Renault Group - DEA-TDV - 78280 Guyancourt, France



Abstract

Recent developments in Autonomous Driving (AD) and Advanced Driver-Assistance Systems (ADAS) require an increasing number of tests to validate these new technologies. Conducting these tests on track would be too time-consuming, so automotive groups rely on simulators to perform most of the testing.

To integrate simulations into the certification process, a digital twin of the physical autonomous vehicle is created and must be calibrated to generate data that is sufficiently similar to the on-track tests. In this work, we present an efficient methodology that will assess the quality of the simulator by comparing it to real on-track data, then calibrating and readjusting it. Once calibrated, the simulator can generate a more realistic time series. The process amounts to solving an inverse problem with an ABC method by integrating the use of a surrogate model that replaces the simulator, which is much faster and less expensive to run on specific tasks.

Introduction

- Context: validation and certification of Autonomous Driver (AD) and Advanced Driver-Assistance Systems (ADAS)
 - numerous onboard sensors in cars
 - ▷ a large amount of information
 - many strict regulations
 - ▷ a lot of on-track tests over long distances
- Proposed solution: develop digital platforms to model AD/ADAS and create simulations
 - complete or even replace the real on-track tests
- Problematic: ARE THE SIMULATIONS SUFFICIENTLY CORRELATED WITH THE REAL TESTS TO BE USED LEGALLY?
- **Goal:** simulator calibration
- integrates the simulations into the certification process by generating data similar enough to the on-track tests
- develop a methodology that will gauge the quality of the simulator to calibrate and readjust it
- combination of the resolution of an *inverse problem* and a *direct problem*

Data and tools available:

- simulator platform: access to the SCANeR simulation software to create the desired data
- simulated data: as numerous as wanted
- real on-track test data: a small number

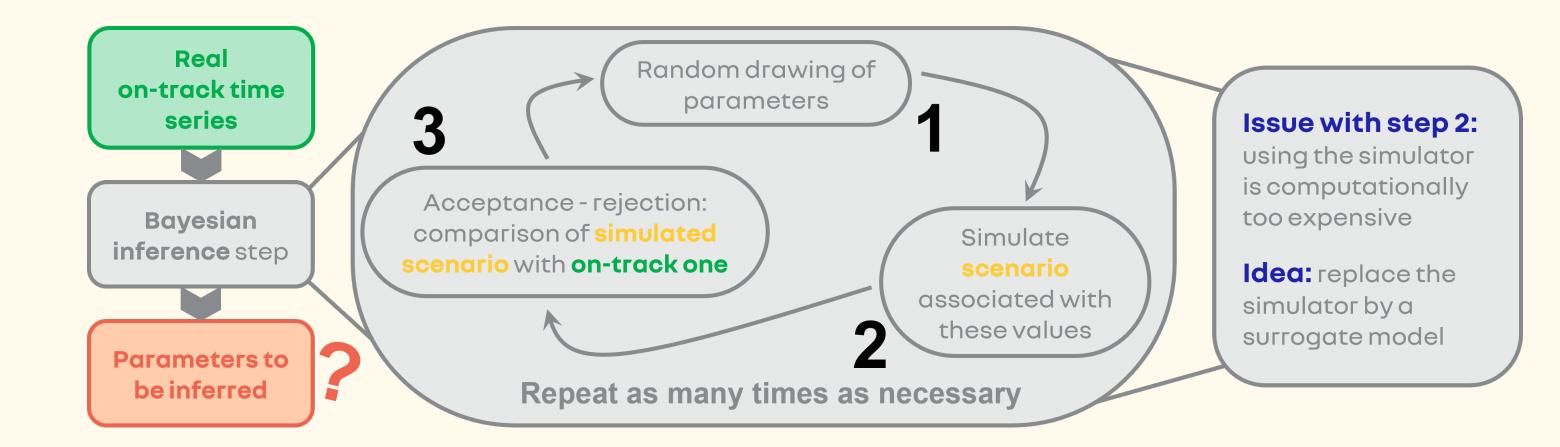


Figure 1: General process summary. The three blocks on the left represent the inverse problem which consists in finding the values of the input parameters associated with the reference on-track test. The middle section describes how ABC methods work. The last part concerns the issue and how we intend to solve it.

Functioning of the simulator S

 $S(\theta) = y$

- Inputs θ: require different input parameters to define the desired experiment
 ▷ initial speed, braking efficiency, ..., etc.
- Outputs y: generate the associated time series describing vehicles' behavior
 > speed, acceleration, ..., etc.

Solving the inverse problem

We have: a predictor \widehat{S} , a reference test y_{φ} and its nominal values θ_0 We want: to recover the posterior distribution, by Bayes' formula

 $p(heta|y) \propto p(y| heta)p(heta)$

Inverse problem

We have:

- one so-called reference test, on-track time series y_{φ}
- its associated input parameters called nominal values θ_0
- We want: to recover the input parameters that would simulate the *closest* time series to the reference ones

How to do it?

- Approximate Bayesian Computation (ABC) > likelihood-free inference schemes
- Problem: each step is repeated iteratively and step 2 requires the use of the simulator which is computationally too expensive

DEVELOPMENT OF A SURROGATE MODEL THAT MIMICS AND REPLACES THE SIMULATOR

Surrogate model \hat{S}

To build the surrogate model, we construct a predictor \widehat{S} which generates output time series for a given set of parameters $\widehat{S}(\theta) = y$

SimulatorTraining data is
generated with
the simulatorInput
parametersOutput
time series θ_1
 θ_2 \checkmark

where the likelihood $p(y|\theta)$ is computed with \widehat{S} and $p(\theta)$ is the prior distribution depending on θ_0 noted π_0

Algorithm 1 ABC acceptance/rejection method

Input: initial tolerance ε , distance d, prior distribution π_0 **Output:** Θ which contains several vectors of accepted parameters while nb_accepted > 0 do $nb_accepted = 0$ for $i \in \{1, ..., 500\}$ do random drawing of candidate parameters $\theta' \sim \pi_0$ generation of associated time series $y' = S(\theta')$ if $d(y', y_{\varphi}) < \varepsilon$ then $nb_accepted = nb_accepted + 1$ θ' is accepted and saved as a new value in Θ end if end for calculation of θ_{mean} , the average of all accepted θ contained in Θ generation of associated time series $y_{\text{mean}} = S(\theta_{\text{mean}})$ update of the tolerance $\varepsilon = \min \{\varepsilon, d(y_{\text{mean}}, y_{\varphi})\}$ end while

Obtained results

Obtained solutions:

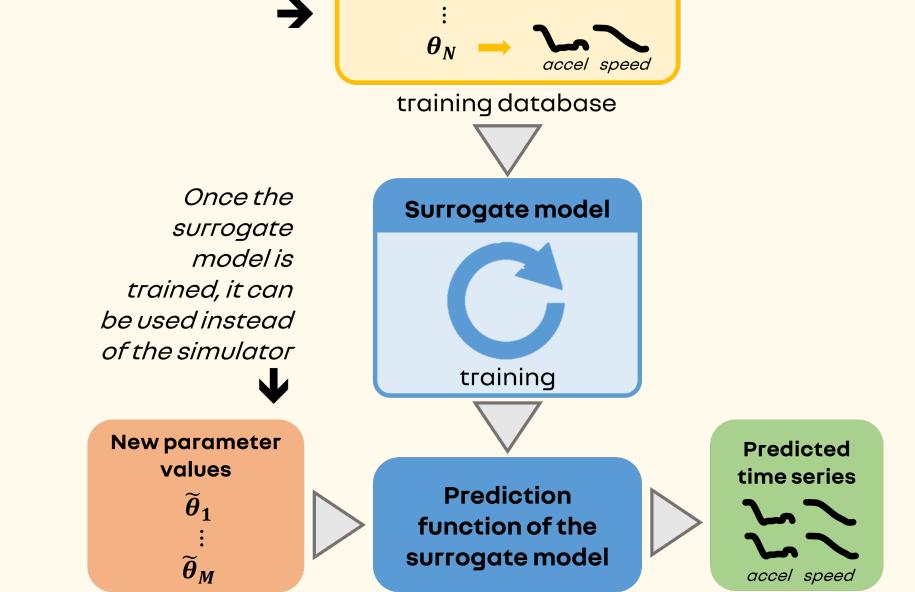


Figure 2: Summary of the training and predicting process of the surrogate model

computation of θ using the Θ set output of Algorithm 1
 selection of θ_{sim} in the training database
 the θ_i which generates the best simulation S(θ_i)
 Quality of the results: comparison of S(θ₀), S(θ_{sim}), S(θ) and S(θ)

		RMSE
simulation with nominal values	$S(\theta_0)$	0.350
the best simulation in training dataset	$rac{S(heta_{sim})}{\widehat{S}(\widehat{ heta})}$	0.310
prediction with the inverse problem result	``	0.263
simulation with the inverse problem result	$\mathcal{S}(\widehat{ heta})$	0.348

Table 1: RMSE results

- Good results: the ABC algorithm allows to beat the score of the nominal values and even to beat the best simulation with the surrogate model
- Limitations and future improvements: the parameters output by the algorithm does not allow the simulation of clearly better time series