Renault Group

Construction of a Surrogate Model: Multivariate Time Series Prediction with a Hybrid Model

<u>Clara CARLIER⁽¹⁾⁽²⁾</u> Matthieu LERASLE⁽¹⁾ Arnaud FRANJU⁽²⁾ Matthias OBREBSKI⁽²⁾

(1) CREST, ENSAE, IP Paris at Palaiseau (2) DEA-TDV1, Renault Group at Guyancourt

DSC 2023 EUROPE VR @ Antibes Driving Simulation & Virtual Reality Conference & Exhibition Friday, September 8th

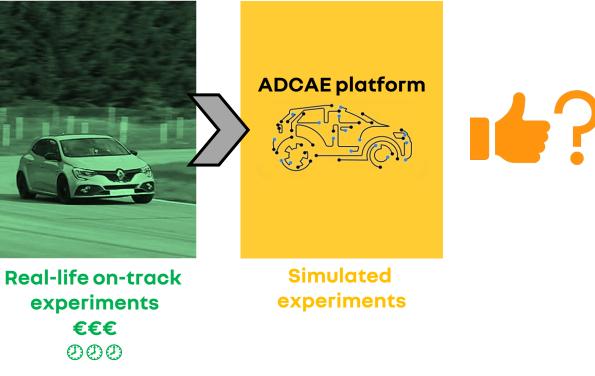
Summary

01 Introduction BACKGROUND, ISSUES AND OBJECTIVES

Surrogate model construction

CLASSICAL METHODS, AGGREGATION AND HYBRIDATION

Conclusion

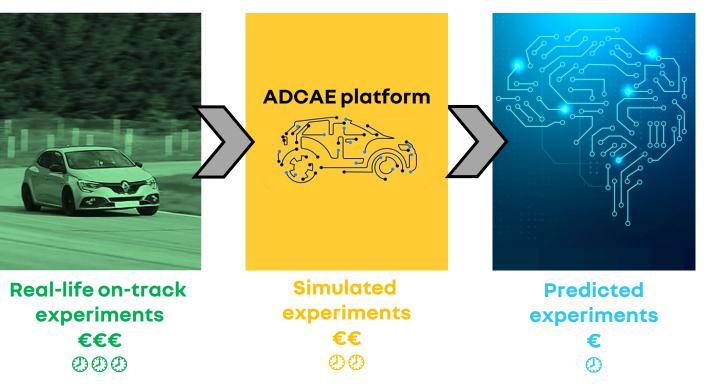

NUMERICAL RESULTS AND COMPUTATION TIMES

Introduction

BACKGROUND, ISSUES AND OBJECTIVES

01 - Introduction: background, issues and objectives

CONTEXT: Validation and certification of autonomous vehicles


- Real-life on-track experiments are costly and time-consuming
- Use the simulator through simulated experiments to integrate them into the vehicle certification and homologation process

Are digital simulations sufficiently correlated with reality to be used legally?

GLOBAL OBJECTIVE: Simulator calibration

 Develop a methodology for gauging the quality of simulations and adapting their use, in order to prove that it is possible to supplement or even replace track tests with simulator tests

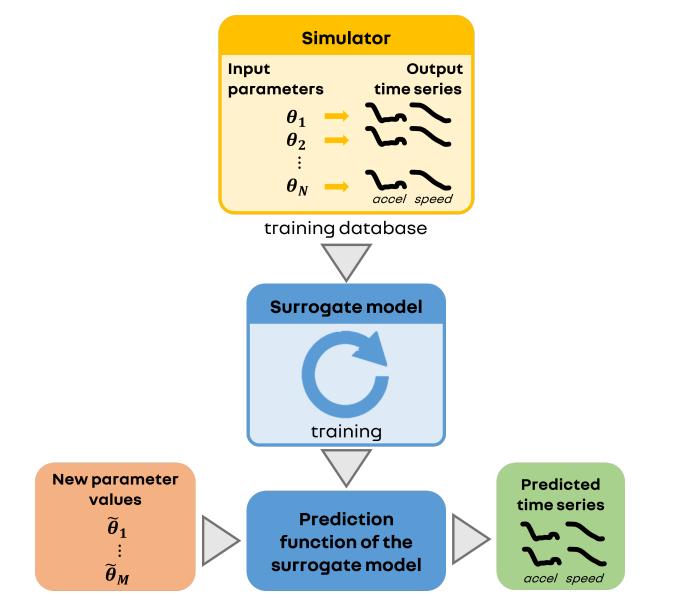
01 - Introduction: background, issues and objectives

PROBLEM:

The simulator takes a long time to launch (several minutes for each launch), which is restrictive in certain contexts:

- Relaunch the simulator repeatedly in an iterative process
- Massive simulation (~1M)

OBJECTIVE:


- Build a surrogate model based on Machine Learning methods that will mimic the simulator
- A model that is as accurate as possible while keeping computation times to a minimum

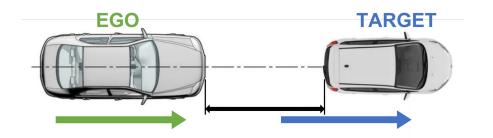
5

Renault

RC

01 - Introduction: background, issues and objectives

Renault


RG

Data description

INPUT PARAMETERS AND OUTPUT TIME SERIES

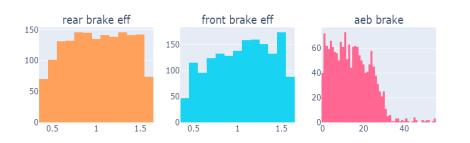
02 - Data description: input parameters and output time series

Two vehicles in motion: testing the AEB of the second vehicle (EGO) following sudden braking by the first (TARGET). **DATA FORMAT:**

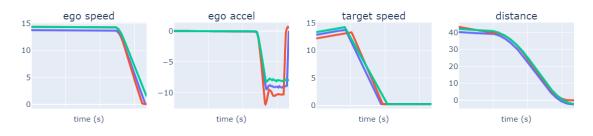
Input: 7-number vector

CONSIDERED SCENARIO:


- Output: 2684-number vector
- 1642 experiments in total


CONSIDERED LOSS:

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\mathrm{TR}_i - P_i)^2}$$



INPUT PARAMETERS : 7 values

OUTPUT PARAMETERS : 4 time series, 671-time steps

Surrogate model construction

CLASSICAL METHODS, AGGREGATION AND HYBRIDATION

RMSE $(\times 10^{-2})$ between true and predicted values

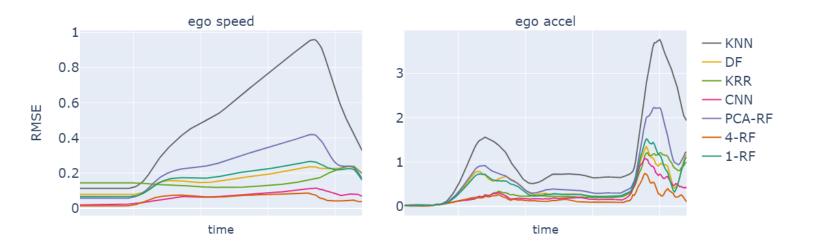
All proposed methods :

		k-NN	KRR	CNN	DF	1-RF	4-RF	PCA-RF	
RMSE	train	9.23	0.04	1.22	4.26	1.24	0.71	1.95	TRAIN
(×10 ⁻²)	validation	30.15	7.21	2.31	7.05	7.27	3.69	12.35	VALIDATION
Traini	ng time	0.05 sec	0.22 sec	1h	13 min	42 sec	53 sec	7.42 sec	
Predic	tion time	0.01 sec	0.02 sec	1.74 sec	0.90 sec	0.09 sec	1.00 sec	1.24 sec	

More detailed results :

	Ego speed (m/s)	Ego accel (m/s²)	Target speed (m/s)	Distance (m)
k-NN	11.00	64.77	8.02	36.83
KRR	2.20	7.14	1.63	17.86
CNN	0.18	3.85	1.06	4.16
DF	1.32	8.88	5.80	12.19
1-RF	1.36	9.54	4.86	13.31
4-RF	0.12	1.47	2.34	10.84
PCA-RF	2.33	20.53	5.58	20.96

k-NN : *k* nearest neighbors ; KRR : Kernel Ridge Regression ; CNN : Convolutional Neural Networks ; DF : Deep Forest ; RF : Random Forests ; PCA-RF : Random Forests with PCA

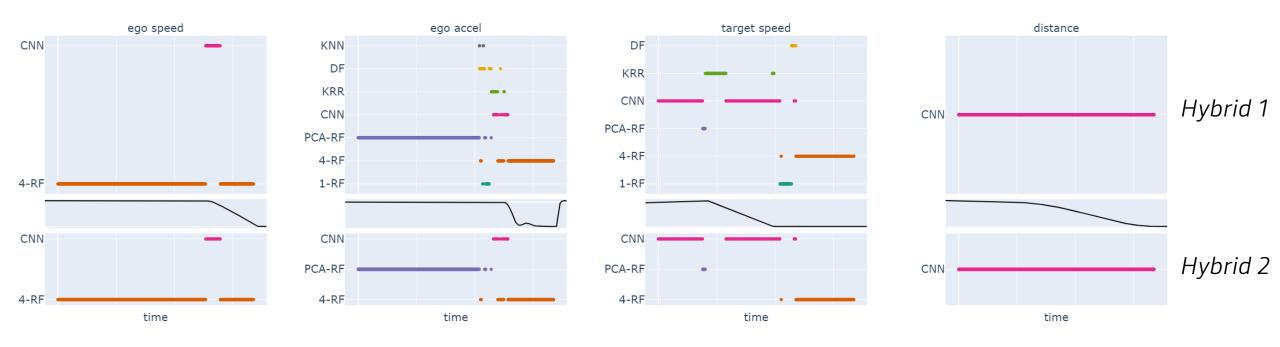

Construction of a Surrogate Model - September 8th

VALIDATION

RG

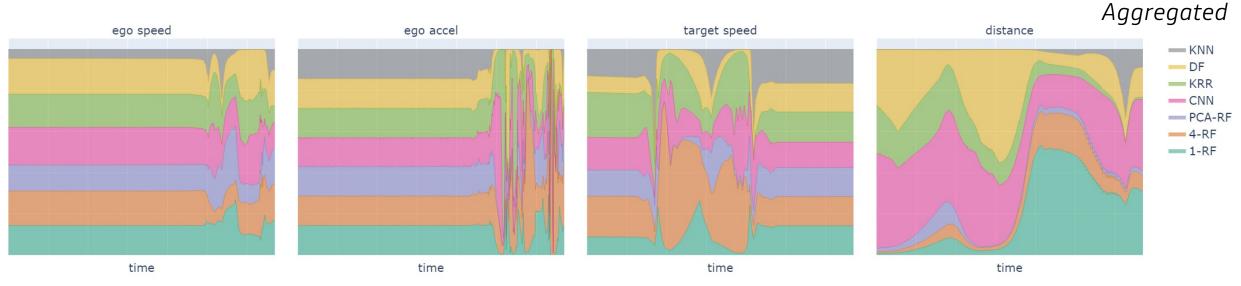
VALIDATION

RMSE $(\times 10^{-2})$ between true and predicted values at each time step



RG

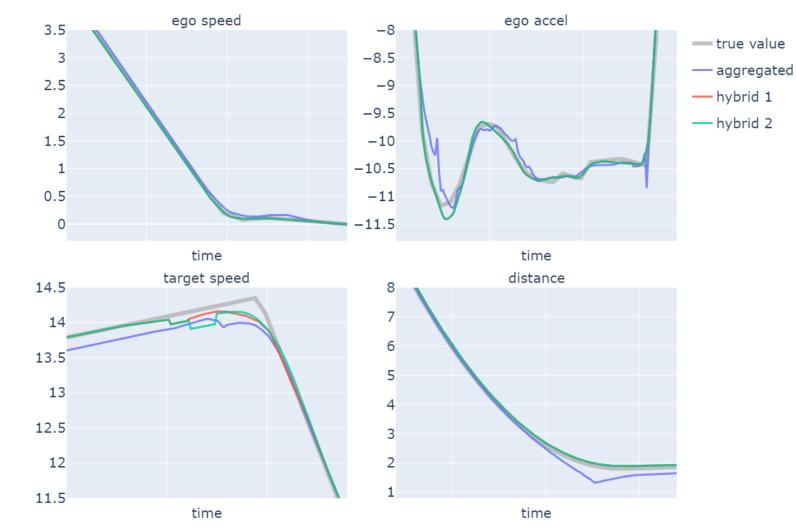
VALIDATION


First idea: hybrid models

One method selected for each time step

Second idea: expert aggregation

Retain all methods by assigning them higher or lower weights at each time step



13

RG

VALIDATION

RG

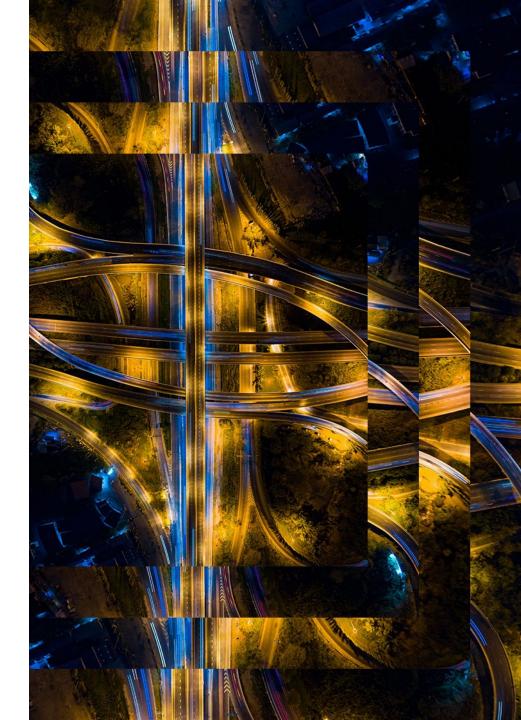
Final results: one concrete example

Final results: RMSE $(\times 10^{-2})$ between true and predicted values

• With validation set (data used to construct the new models):

	Ego speed	Ego accel	Target speed	Distance	Mean
CNN	0.18	3.85	1.06	4.16	2.31
4-RF	0.12	1.47	2.34	10.84	3.69
Hybrid 1	0.11	1.46	0.93	4.16	1.66
Hybrid 2	0.11	1.46	1.04	4.16	1.69
Aggregated	0.07	0.59	0.24	1.36	0.56

With test set (never-used data):


	Ego speed	Ego accel	Target speed	Distance	Mean
CNN	0.23	3.34	1.00	2.52	1.77
4-RF	0.13	1.36	2.36	9.84	3.42
Hybrid 1	0.12	1.35	1.12	2.52	1.28
Hybrid 2	0.12	1.35	1.00	2.52	1.25
Aggregated	0.64	3.81	1.35	4.97	2.69

VALIDATION

TEST

Conclusion

NUMERICAL RESULTS AND COMPUTATION TIMES

Calculation times:

	CNN	4-RF	Hybrid 1 (+)	Hybrid 2 (+)	Aggregated (+)
Training	59 min	53 sec	0.29 sec	0.18 sec	2 min 13
Prediction	1.39 sec	0.15 sec	10.25 sec	8.59 sec	2 min 17

(+) add the prediction times for each method

To generate 50,000 experiments in several stages:

4-RF	Hybrid 2	Simulator *	
1 minute	1hour	5 days	

*stop and restart the simulator at each step

To conclude :

- Mixing models gives better results.
- The whole process increases calculation times but is still faster than using the simulator.

Choice to do: trade-off between calculation time and accuracy

Thank you